
Hidden dimers and their effect on the optical and electronic transmission in Thue-Morse

aperiodic structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 5681

(http://iopscience.iop.org/0953-8984/12/26/314)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 05:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 5681–5689. Printed in the UK PII: S0953-8984(00)11000-8

Hidden dimers and their effect on the optical and electronic
transmission in Thue–Morse aperiodic structures

Samar Chattopadhyay† and Arunava Chakrabarti‡
† Department of Physics, Hooghly Mohsin College, Chinsurah, Hooghly, India
‡ Department of Physics, University of Kalyani, Kalyani, West Bengal 741 235, India

Received 13 January 2000, in final form 4 May 2000

Abstract. We show that a Thue–Morse aperiodic structure presents a unique kind of positional
correlation between its constituents, leading to an unattenuated transmission of light as well as
electrons through it. The reason for this is a resonant tunnelling, whose origin can be traced
back to the presence of certain ‘dimers’ which are not explicitly displayed in the structure. It is
interesting to observe that under suitable conditions, two apparently uncorrelated constituents in a
Thue–Morse sequence combine together to form a dimer and the entire system can be thought of as
being composed of nested dimers only. This aspect has been analysed in terms of light propagation
through a Thue–Morse multilayered system and its electronic counterpart.

1. Introduction

The problem of localization of electromagnetic waves in quasiperiodically ordered layered
media has attracted considerable attention in the last decade (see [1–4, 7] and references
therein). Due to recent advances in nanostructure technology, finite-size sequences of two
different materials can now be grown in the laboratory [5]. Hence the results of such studies
can be subjected to experimental investigation, as has already been done [6]. So far, the
models considered have consisted of binary orderings of slabs of two different materials A and
B, arranged following a typical inflation rule A→ AmBn, and B→ A. m and n are positive
integers greater than zero, and m = n = 1 gives the well-known Fibonacci sequence of A and
B [1]. The above inflation rule generates other quasiperiodic sequences for n = 1 and arbitrary
values of m. However, it may be mentioned here that many more orderings, different from the
one that we have referred to above, have been investigated (see [8, 9] and references therein),
not only for studying optical properties, but as regards the electronic and related properties
as well. We will name a few of them. Wen et al [9] proposed a class of substitution rules
for generating various quasiperiodic chains and obtained relevant scaling properties of the
corresponding energy spectrum. They also constructed explicit atomic surfaces for a subclass
of these lattices. The nature of the atomic surfaces has also been studied by Luck et al [10]
for different quasiperiodic self-similar structures. In addition to the electronic properties,
phonon properties as well as diffusion characteristics of different quasiperiodic lattices were
studied by Kohmoto and Banavar [11]. In fact, a wealth of literature has resulted from the
extensive research on different properties of these systems over the past few years. As far as
the problem of light propagation in binary quasiperiodic or aperiodic multilayers is concerned,
the materials are characterized by different refractive indices nA and nB and layer thicknesses
dA and dB. Results are available, in general, for normal incidence only, with the additional

0953-8984/00/265681+09$30.00 © 2000 IOP Publishing Ltd 5681



5682 S Chattopadhyay and A Chakrabarti

simplification δA = δB, where δA (B) stands for the phase acquired by light in travelling through
a particular slab.

In general, owing to the nature of quasiperiodic ordering, the transmission coefficient (T )
of light as a function of wavelength for transmission through a finite length of such multilayered
media exhibits a rich multifractal character, as was first observed by Kohmoto et al [1]. It
was shown that, for δA = δB = (2n + 1)π/2, the transfer matrices for crossing a multilayer
at any generation j exhibit six-cycle behaviour; that is, Mj = Mj+6. Additionally, it is found
that the entire multilayer turns out to be completely transparent to the incoming light for some
special values of the wavelength that depend on the chosen sequence of A and B. In a Fibonacci
sequence these values are obtained by looking at the zeros of the invariant of the ‘trace map’ [1].

The experimental realization of the localization of electromagnetic waves in aperiodically
layered structures was achieved by Gellermann et al [6], who measured the optical trans-
mission of a quasiperiodically ordered dielectric stack of SiO2 (A type) and TiO2 (B type).
The experiment was done for a maximum of 55 layers (ninth-generation Fibonacci sequence)
and the scaling of the transmission coefficient with increasing Fibonacci sequence at quarter-
wavelength optical thickness was observed.

Coming back to the ‘perfect-transmission’ situation, we find that it also occurs for some
other quasiperiodic sequences [2–4]. The reasons are, however, different. For example,
Dulea et al [3] reported that for a sequence with m = 1, and arbitrary n, one gets T = 1
for δA = δB = δ = kπ/n, k being an integer. This happens irrespective of the ratio of the
refractive indices of the two constituent materials of the multilayer. The complete transparency
in this case is due to the elements B always occurring in clusters of size n. For the specific
choice of the phase δ = kπ/n, the transfer matrix for crossing these clusters turns out to be
the identity, leaving behind an array of elements A only. For the same choice of phase, the
matrix product for the whole chain of A elements also becomes the identity, which makes the
overall transmission coefficient unity.

The corresponding problems in the electronic case, namely the possibility of getting
extended electronic eigenstates and perfect transmission across arbitrarily large aperiodic
chains, have also been studied for the past few years [12, 13]. The reason for the occurrence
of perfect transmission in some of these lattices has been traced to the presence of correlations
in the atomic positions. For example, in the so-called ‘random-dimer model’ [12] there are
a finite number of extended (perfectly transmitting) states, whereas in some of the infinite
quasiperiodic chains the positional correlation persists at all scales of length. This results in an
infinite number of energies supporting extended Bloch-like eigenstates and, hence, complete
transmission in these lattices [13].

In this communication, we re-examine the problem of transmission of light and electrons
through a Thue–Morse (TM) aperiodic structure. The TM lattice [14] is already known to
sustain extended electronic states [15] in spite of its aperiodicity. At the same time, unit
transmission of light waves through a TM heterostructure has also been reported [7]. However,
there still remains scope for obtaining a microscopic view of the basic mechanism responsible
for such phenomena. This is because the TM lattice is not known to possess an ‘invariant’ as
in the classical case of a quasiperiodic Fibonacci chain [1]; neither can one locate any obvious
‘dimer’-like positional correlations as in the cases reported in references [12] and [13]. Most
interestingly, we find that the cause of the unattenuated transmission in the TM case is once
again the presence of dimers. However, the dimers are ‘hidden’ in the sense that two very
widely separated building blocks of a TM sequence can form dimers in very special situations,
and their presence cannot be revealed otherwise. This situation is in contrast to what we
already know regarding the canonical cases discussed in references [12] and [13]. Normally,
on a technical level the optical problem has to be dealt with quite differently from the electronic
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case, because of the presence of additional interfacial matrices in the former case. Of course,
Lamb and Wijnands [8] have shown that one can avoid the explicit appearance of the interface
matrices by a suitable change of basis. For the present study we choose to discuss two different
cases. First, we address the problem of light propagation in the Thue–Morse arrangement.
There is a possibility of getting an infinite number of transmission windows, in view of our
previous experience with the electronic case [13], and we look into that aspect. Second, we
show that the known results for the electronic case are restored if we recognize the proper
dimers embedded in any finite TM chain. The basic reason for the unit electronic transmission
then becomes obvious. In addition, we report a model-dependent situation in which once again
resonance occurs at a special value of the energy of the electron. This energy could not be
obtained in the earlier analyses.

2. Light wave propagation in a Thue–Morse multilayer

A Thue–Morse (TM) sequence is generated following the growth rule A→ AB and B→ BA
[14]. Our basic aim is to examine the conditions under which a multilayer grown in this
sequence yields full transmission of light. Our investigations show that a special positional
correlation among the two kinds of block in the multilayer is responsible for the full trans-
mission of light in these multilayers. Again, because of the self-similarity inherent to the
structure of the Thue–Morse sequence, it is possible to extract, in a renormalization group
sense, a whole hierarchy of conditions for attaining complete transparency of light across
arbitrarily large multilayer stacks. As far as we are aware, this feature does not seem to have
been emphasized in the literature so far.

Let us now consider a binary system with A and B representing the two different blocks
in the layered system that is grown by placing A and B blocks sequentially following the TM
generation rule. Let the thicknesses and the refractive indices of the materials be dA, nA and dB,
nB respectively. The phases of the light waves, when they propagate through the two media,
are δA = nAkdA/cos(θA) and δB = nBkdB/cos(θB) respectively. k is the wave vector of the
incident light and θi is the angle of incidence. For our analysis we need not restrict ourselves
to normal incidence, and we work in the general case where δA is not equal to δB.

The matrices required for studying propagation through the layers are [1]

MBA =
(

1 0
0 nA cos θA/nB cos θB

)
.

We also define MAB = M−1
BA. The matrices MBA and MAB represent the light propagation

across the interfaces B← A and A← B respectively. The propagation within the layer A is
represented by the matrix

MA =
(

cos δA − sin δA

sin δA cos δA

)
.

There is a similar matrix corresponding to the propagation through layer B. The transmission
coefficient for crossing a finite length of the layered structure—say, the lth-generation
segment—is given by [1]

Tl = 4/(M2
l + 2). (1)

Here, Ml is the product of the matrices MAB, MBA, MA and MB according to the Thue–Morse
sequence in any generation l, and M2

l denotes the sum of the squares of the four elements of
Ml . For example, in the second generation the sequence is ABBA and the corresponding string
of transfer matrices will be MAMBAMBMBMABMA. We assume that at any generation, the entire
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slab is sandwiched between two A-type layers on both sides. For the sake of convenience, we
investigate the problem of full transmission through layers of arbitrarily large systems in two
categories.

(i) The r-independent case: Let us define r = nA cos θA/nB cos θB. The first five generations
are

S0 = A

S1 = AB

S2 = ABBA

S3 = AB BA︸︷︷︸ BA︸︷︷︸ AB

S4 = ABBA BAAB︸ ︷︷ ︸ BAAB︸ ︷︷ ︸ ABBA.

It is interesting to observe that in all the strings beyond S1 there is a central cluster of
identical elements or an identical pair of blocks. For example, in S2 there is a paired
cluster BB at the centre, while in S3 we have a pair of BA blocks (underbraced) occurring
side by side. In each of these strings the identical pair of blocks are flanked by the same
combinations of A and B. Thus, in S4, for example, the central pair is formed by BAAB
(underbraced) and in both the wings we have ABBA. Let us talk specifically about S2,
which has the first flavour of a TM sequence. The string of transfer matrices controlling
the transmission through this block is M2 = [MAMBAMBMBMABMA]. M2 is unimodular.
Now, if we set δB = π/2, the central pair of matrices MBMB turns out to be the identity
with a negative sign. Also, MAB being equal to M−1

BA, we are finally left with an A–A
pair. As we have sandwiched the whole block between two A-type materials, the overall
transmission coefficient will be determined by the matrix

M4
A =

(
cos(4δA) − sin(4δA)

sin(4δA) cos(4δA)

)
.

Obviously a choice of δA = π/4 (or π/2) will make the entire matrix product equal to
either an identity matrix (with a plus or a minus sign) or −iσy , σy being a Pauli matrix.
In either case, the transmission coefficient T2 is one, as is evident from equation (1). In
fact, it is interesting to note that for δB = π/2, the transmission coefficient for the second-
generation segment (ABBA) is unity irrespective of the choice of δA. For δA = π/4 one
gets T = 1 for all generations, even or odd, except S3. However, when δA = π/2, for
all generations, we will have T = 1 as long as δB = π/2. Thus, the set of parameters
δA = kπ/4, δB = mπ/2 will give rise to unit transmission for any generation, k and m

being integers. The choices of k and m really do not depend on which generation we
are interested in. The above analysis reveals an additional interesting fact that has so far
been overlooked for a TM chain. It is the mechanism by which one attains such unit
transmission. In generation S2, as the central BB pair contributes an identity matrix, the
interface matrices MBA and MAB ‘cancel’ each other and the remaining A matrices that
formed the flanks (and were initially separated from each other) automatically form an AA
doublet. So, we actually have a ‘nested’ pairing effect in the arrangement of the elements
that is revealed only for a specific choice of the phases. The effect is more striking if we
go over to the fourth-generation sequence S4. In this chain we have only two isolated Bs
which occupy the fifth positions both from the left and the right ends of the chain. At
the centre there is a BB pair flanked by AA blocks on either side. As soon as the central
pair of matrices MBMB becomes identity, the AA blocks at the flanks form a quadruplet
with the interface matrices nicely taking care of each other. A choice of δA = π/4 then
reduces M4

A to minus the identity and the isolated Bs automatically form a doublet. Once
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again the interface matrices nullify each other. This process goes on and ultimately the
whole string of transfer matrices corresponding to the bulk system turns out to be the
identity. The matrix M4 is now composed of the product MAMA due to the outer A-type
layers. Clearly, M2

A = −iσy and, hence, T4 = 1. Thus under suitable conditions even
the isolated As and Bs in the same string form doublets and quadruplets, bringing out
the underlying positional correlation between the constituents. The TM sequence has not
been emphasized so far either in the electronic case or in the case of optical transmission
in this sequence.

(ii) Other cases: Let us now look into other possibilities for getting complete transmission
through a TM layered structure. We start with the fourth-generation chain S4. We will
use the well-known Cayley–Hamilton theorem for 2× 2 unimodular matrices, namely,

M2 = tr(M)M− I. (2)

I is the identity matrix. We see that if tr(M) can be made equal to zero, then the
product of two identical matrices becomes equal to −I. Considering the string S4 as
a specific example, we note that, as it is unimodular, we can make the product matrix
corresponding to the central block BAABBAAB equal to −I by forcing the trace of
Mc = MBMABMAMAMBAMB to assume the value zero. This leads to the equation

tan(2δA) tan(2δB) = 2r/(1 + r2). (3)

It is therefore obvious that for a particular choice of r , one can tune the phases δA and δB

so as to satisfy equation (3). Under these conditions, the transfer matrix for crossing the
central pair of clusters becomes an identity matrix with a negative sign. Now, the trace
of the sequence ABBA is same as that of BAAB. Therefore, as soon as the central pair of
BAAB clusters offers an identity contribution (barring a phase factor), the ABBA clusters
at the two wings form a doublet and, under the same conditions as the above, their product
matrix becomes identity. If we start out with an arbitrarily long string of As and Bs, the
geometry of S4 will occur locally everywhere, and the conditions obtained from equation
(3) will give rise to an unattenuated transmission through the entire segment. It can be
seen that though there is a dimer consisting of BA–BA in the central portion of the earlier
string S3, the presence of the interface matrix MAB prevents this pair from contributing an
identity matrix and therefore one has to exclude these odd-numbered generations. One
can, however, start with a bigger (even) generation. Because of the inherent self-similarity,
bigger central clusters will always be found which occur in pairs. It is not difficult to check
that for all even-numbered generations, the product matrices will have their determinants
equal to one, so an application of the Cayley–Hamilton theorem can be made without
any difficulty. Such bigger strings of interest are generated by applying the TM inflation
rules twice in succession, i.e. by replacing B by BAAB and A by ABBA. It is to be noted
that using the same kind of idea in the case of a larger string, one can end up with more
and more involved equations. A legitimate question in this regard is that of whether the
solutions of these equations can be obtained in every case. An exact answer is always
difficult (if not impossible) to find as the renormalization process can, in principle, go on
indefinitely. However, one can make a check by means of explicit numerical calculations
up to several generations. For example, if we choose to discuss a specific case—e.g., that
for normal incidence with δA = δB = δ and r = 2—it can be worked out in detail that the
trace of the transfer matrix Mc corresponding to one block belonging to the central pair
forming the dimer (the dimer is, of course, · · ·McMc · · ·), at any even generation from S4

onwards, is of the form

tr(Mc) =
N/2∑
n=0

an cos(2nδ)
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where N is the number of elements A and B in the block which forms half the dimer. It
is difficult to ensure that the above form, when put equal to zero, will always generate
non-trivial values for δ. However, at the same time, the form itself suggests that it will
not be unnatural to expect multiple zeros of tr(Mc) and, hence, a set of values for δ. For
example, in figure 1 we show results for generations S4 and S6 with each member of the
dimer in the two situations comprising of 4 and 16 elements respectively. The new values
of δ in the second case (dashed lines) are clearly seen. For the general case, we have
checked our prediction for different combinations of r and δB, and in each case we have
been able to get different values of δA for a fixed δB up to the eighth generation. This
gives us confidence, and we conclude this section by saying that the self-similarity of the
structure leads to an intuitive understanding that one should get more and more different
values of the wavelength that propagates unattenuated through the structure.

-15

-12

-9

-6

-3

0

0 1 2 3 4 5 6

T
r(

M
n)

δ

Figure 1. Values of the phase δ for which the central pair of matrices becomes an identity (with
a minus sign). The solid line and the dashed line correspond to the fourth- and sixth-generation
structures respectively.

3. The electronic case

The electronic case is less complicated than the earlier part, the simple reason for this being
the absence of interface matrices. Here, we deal with the standard tight-binding Hamiltonian

H =
∑

i

εi |i〉〈i| +
∑
〈ij〉

[
tij |i〉〈j | + tj i |j〉〈i|

]
(4)

where εi is the on-site potential which can assume two values εA and εB depending on the type
of the site and t is the nearest-neighbour hopping integral, taken to be unity in this work. The
transfer matrix now assumes the form

Mi =
(

E − εi −1
1 0

)
.

E is the energy of the electron. The first non-trivial dimer appears in the generation S3, and
resonance occurs whenever the trace of the total transfer matrix for crossing a BA pair vanishes.
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The corresponding energy is given by

E = [εA + εB ±
√

(εA − εB)2 + 8]/2.

Once this correlation is appreciated, it is not unnatural, following the arguments given in
the previous section, that a (countable) infinity of extended eigenstates can be traced in
the thermodynamic limit. Obviously, it is difficult to prove mathematically that solutions
to the polynomial equations in E will exist in all the cases. Once again, we have worked out
numerically the results for several generations and checked that our expectations are correct.
Obviously, bigger and bigger clusters will now be forming dimers, and each bigger cluster can
be looked upon as a renormalized version of the original pair BA. It can easily be checked that
the eigenvalues for these extended states are identical to those already reported in the literature
[15]. It is important to appreciate that the nature of the positional correlation between the
constituents in this particular lattice is different from that for the standard dimer models, either
random or quasiperiodic, in the sense that, here, the dimer correlation is not transparent.

This approach also unveils a very specific set of extended eigenstates. By looking at
the fourth-generation chain we find that the transfer matrix for crossing the central BB pair
becomes the identity for E = εB. Simultaneously, if we choose εB = εA±

√
2, then a resonant

tunnelling occurs in the S4 string and in all subsequent generations. This of course, holds for
a specific model. Thus in addition to the previous correlations, we get another one leading to
an extended eigenstate. The resonance occurs sharply only at the specified energy E = εB

for all generations l � 4, as can be seen from figure 2, where, for this latter model, we show
how the bandwidth of resonance shrinks with increasing generation index, indicating that a
delta-function-like peak will show up for the infinite lattice at the special value of the energy.
The situation is the same for all of the other cases as well.

0

0.2

0.4

0.6

0.8

1

-0.1 -0.05 0 0.05 0.1

T
(E

)

E

Figure 2. Transmission coefficients for the electronic cases with εB = 0 and εA =
√

2 around the
resonance energy E = 0 for three successive generations S4 (solid line), S5 (dashed line) and S6
(dotted line). The decay of the bandwidth of the resonance is evident from the behaviour of T (E).

In figure 3 we display the absolute values of the amplitudes of this special wave function
for a tenth-generation lattice with E = εB = 0 and εA = −

√
2. We exhibit the amplitudes only

for 256 lattice sites to prevent the figure from becoming unclear. The extended nature of the
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Figure 3. Absolute values of the amplitudes of an extended wave function in a particular model
discussed in the text. Here, εA = −

√
2, εB = 0 and E = 0. The hopping integral t is set equal to

one. Clusters of amplitudes follow a TM sequence, as can be seen.

wave function is clear. An additional interesting feature shows up here. It can be checked that
the values of the amplitudes at 16 successive sites, starting from the first site, group together
in two different ways. The pattern of distribution for the first 16 sites is different from that
for the second 16 sites. These two different patterns then repeat themselves following the TM
substitution rule. In figure 3, these two different branches can be easily identified.

4. Concluding remarks

In short, we have shown that the Thue–Morse sequence presents a unique example of an
aperiodic lattice which has dimer-like positional correlations between the constituent elements.
The dimers are not transparently displayed in the structure, as they are for other classical
examples, but their presence is revealed under some special conditions. Apparently, very
widely separated elements in the original chain can then be looked upon as the elements of
a dimer at a different scale of length. The transfer matrices for crossing these elements then
collapse to form identity matrices giving rise to unattenuated light transmission or electron
transmission. The microscopic reason for the existence of extended Bloch-like electronic states
can thus be analysed from this viewpoint.
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